文献:Adsorption behaviour of carbon nanodots modulated by cellular membrane potential
文献链接:
作者:Shuyuan Zhang, Changqing Xiao, Hang He , Ziqiang Xu, Beibei Wang, Xueqin Chen , Cao Li, Bingbing Jiang, Yi Liu
相关产品:
原文摘要:
Carbon nanodots (CDs), as a kind of fluorescent nanomaterials, have attracted widespread attention for biomedical application. Since different cells possess different membrane potential, the influence of trans-membrane potential on the adsorption behaviour is required to be explored extensively. It is found that less amount of CDs can be adsorbed by depolarized cells with decreased membrane potential while hyperpolarized cells with enhanced membrane potential promoted the adsorption of CDs. Similar adsorption trend is observed for two cell lines, namely NIH3T3 and MCF-7. Since phosphocholine is the primary component of the cellular membrane, the adsorption behaviour of CDs is further complemented with the interactions between CDs and three kinds of liposome with different surface charge via the thermodynamic and kinetic perspective. The adsorption constants between negative charged CDs and liposome are positive related with their membrane potential, which is similar to the adsorption rate constants. It was further found that adsorption of CDs onto liposome is initiated by electrostatic attraction forces. Finally, the membrane integrity and fluidity of liposome exposed to CDs have also been characterized. So the membrane potential of cells is especially important, when prediciting the relative cytotoxicity of CDs and developing CDs based nanomaterial for biomedical application.
DOPC的分子结构包括一个亲水的磷脂头部(磷酸胆碱部分)和两个疏水的脂肪酸尾部(均为油酰基链)。这种两亲性(即同时具有亲水和疏水性质)的结构,使得DOPC能在水溶液中自发形成双层膜结构,类似于生物细胞膜。在脂质体制备过程中,DOPC 的浓度、水合条件等因素会对脂质体的最终粒径产生影响。DOPC 在脂质体制备中有着多方面的重要应用,无论是构建基础的脂质体结构,还是赋予脂质体各种特殊的功能。
图为:CDs和DOPC之间的静电吸引机制的一个方案
DOPC在脂质体制备中的应用:
准备适量的 DOPC(1,2 - 二油酰基 - sn - 甘油 - 3 - 磷酸胆碱),这是一种常用于构建脂质体的磷脂类物质。小心地将其称取后,放置在一个干净且合适的容器中,接着缓慢地加入适量的三氯甲烷作为溶剂,使得 DOPC 能够充分地溶解在其中。在这个溶解过程中,可以使用温和的搅拌或者轻轻晃动容器的方式,帮助 DOPC 更快更均匀地分散在三氯甲烷里,直至肉眼观察到 DOPC 完全溶解,形成澄清透明的溶液,整个过程需要在通风良好的环境下进行操作,以避免吸入有害的三氯甲烷挥发气体。待 DOPC 在三氯甲烷中溶解完毕后,将含有 DOPC 溶液的容器转移至旋转蒸发仪上进行下一步操作。仔细地调节旋转蒸发仪的相关参数,如旋转速度、温度以及真空度等,确保在合适的条件下,使三氯甲烷溶剂能够在旋转和减压的双重作用下逐渐挥发并被去除掉。随着溶剂的不断挥发,溶液会变得越来越浓稠,最终在容器的内壁上会形成一层均匀且薄厚适中的脂膜。在整个旋转蒸发的过程中,要时刻关注仪器的运行状态以及脂膜的形成情况,保证脂膜能够完整且良好地生成,避免因操作不当而出现脂膜不均匀或者破损等问题。
图为:DOPC结构式
结论:脂质体的基本结构是由磷脂分子形成的脂质双分子层包裹着内部的水相空间。DOPC 作为一种典型的磷脂,具有亲水性的头部和两条疏水性的脂肪酸链,众多的 DOPC 分子能够在合适的条件下自动排列形成脂质双分子层。其亲水头基朝向水相(外部缓冲液以及内部包裹的水相),而疏水的脂肪酸链则相互靠近并朝向双分子层内部,构成稳定的膜结构,这是脂质体形成的基础框架。例如,在模拟生物膜的脂质体研究中,DOPC 可以准确地构建出类似生物细胞膜结构的脂质双分子层,为后续探究膜相关的生理过程提供良好的模型。