DSPE-PEG制备PLP-D-R多功能靶向TME纳米颗粒中的应用
瑞禧生物2025-05-07   作者:ZJ   来源:
字号大小:

文献:Responsive and activable nanomedicines for remodeling the tumor microenvironment

文献链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1r450jc0rs4j0660by690rf004429259&site=xueshu_se

作者:Yinlong Zhang, Xuexiang Han and Guangjun Nie

相关产品:

DSPE-PEG 磷脂-聚乙二醇

NH2-PEG-DSPE 氨基-聚乙二醇-磷脂

原文摘要:Here we describe two protocols for the construction of responsive and activable nanomedicines that regulate the tumor microenvironment (TME). The TME is composed of all non-cellular and cellular components surrounding a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules, and extracellular matrix and has a crucial role in tumor initiation, growth, and metastasis. Owing to the relatively stable properties of the TME compared to tumor cells, which exhibit frequent genetic mutations and epigenetic changes, therapeutic strategies targeting the TME using multifunctional nanomedicines hold great potential for anti-tumor therapy. By regulating tumor-associated platelets and pancreatic stellate cells (PSCs), the two major players in the TME, we can effectively manipulate the physiological barriers for enhanced drug delivery and significantly improve the tumor penetration and therapeutic efficacy of chemotherapeutics. The preparation and characterization of the multifunctional nanoparticles takes ~10 h for tumorassociated platelet regulation and 16 h for PSC regulation. These nanoformulations can be readily applied to regulate other components in the TME to realize synergistic or additive anti-tumor activity.

 

DSPE-PEG是一种在生物医学领域应用的材料。DSPE即1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺,具有亲脂性,这使得它能与细胞膜等脂质结构紧密结合。而聚乙二醇(PEG)部分,具有良好的亲水性和生物相容性。PEG的存在极大地改善了DSPE在水性环境中的溶解性和稳定性,减少了其在体内的非特异性吸附,从而延长了其在体内循环中的时间。这种双亲性的特点使DSPE-PEG能够在水中自组装形成胶束或脂质体结构。在药物递送方面,它可以包裹疏水性药物,提高药物的溶解度,并且可通过修饰实现对特定组织或细胞的靶向递送。基于此该文献设计制备多功能靶向TME纳米颗粒。过程如下:

NH2-PEG-DSPE 

图:PLP-D-R的合成

PLP-D-R的制备

将PLGA溶解于DCM中加入去离子水溶液。用探针超声波器超声乳化混合物。在混合物中加入PVA和溶解在DCM中的疏水阿霉素。在超声过程中多次翻转溶液。将混合物滴加入PVA中,搅拌。通过减压旋转蒸发去除混合物中的有机溶剂。在室温下,离心然后在去离子水中重悬,用于核纳米颗粒溶液。加入R300搅拌。收集吸收了R300抗体的核心纳米颗粒,在室温下离心。将卵磷脂、 DSPE-PEG、mmp2可裂肽和胆固醇在lDCM中置于圆底瓶中,室温下孵育。使用旋转蒸发器减压,去除DCM。在圆底烧瓶内应形成磷脂乳白色膜。临关步骤旋转蒸发器在开始时应设置为低速和高速。接近最后。将含有阿霉素和R300的纳米颗粒,加入肽/磷脂膜,水化。将混合物超声,得到纳米颗粒表面涂有肽脂壳层(PLP-D-R)的纳米颗粒。

Au@PP/RA/siRNA制备

先合成mPEG-d-PEI,再合成Au@PP/RA,接着将 Au@PP/RA与siRNA(siHSP47,siN.C或Cy5-siRNA)以一定的重量比混合,将Au@PP与siRNA混合,获得Au@PP/siRNA。将所得Au@PP/RA/siRNA在室温下孵育。使用凝胶阻滞试验验证了纳米颗粒在wt/wt比为7.5时siRNA的完全吸附。

 

NH2-PEG-DSPE 

图:Au@PP/RA/siHSP47的合成

 

结论:DSPE-PEG参与制备的PLP-D-R的核壳结构,尺寸为156nm。当用活化的MMP2处理时,PLP-D-R以MMP2依赖的方式释放所载的药物R300和阿霉素。较低的pH也进一步加速了阿霉素的释放。试验表明,释放的R300保持了其生物活性,PLP-D-R可以以mmp2依赖的方式有效作用于MCF7、A549和HUVECs。